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Abstract 

Kansei engineering is a technology for translating human feelings into product design. Several multivariate analyses are 
used for analyzing human feelings and building rules. Although these methods are reliable, they require large computing 
resources. It is difficult for general users to deal with many variables because of small personal computers, and the need for 
the user to be an expert on statistics. This paper presents an automatic semantic structure analyzer and Kansei expert systems 
builder using self-organizing neural networks, ART1.5-SSS and PCAnet. ART1.5-SSS is our modified version of ART1.5, a 
variant of the Adaptive Resonance Theory neural network. It is used as a stable non-hierarchical classifier and a feature 
extractor, in a small sample size condition. PCAnet performs principal component analysis based on generalized Hebbian 
algorithm by Sanger (1989). These networks enable quick and automatic rule building in Kansei engineering expert systems. 
AKSYONN4 system is the automatic builder for Kansei engineering expert systems because it uses self-organizing neural 
networks. The system enables 'real-world' applications of Kansei engineering in product development. 

Relevance to industry 

An automatic analysis of human feelings on products and automatic building of Kansei engineering expert systems can 
increase the prospects of applying Kansei engineering to acceptable product design. Neural networks-based analysis and 
automatic expert system building enable the on-site analyzing. 
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1. Introduction 

Kansei engineering is a method used to convert a 
customer's ambiguous images of products into a 
detailed design (Nagamachi, 1988, 1991, 1995). 
Kansei is a Japanese word that corresponds to feel- 
ing or impression. Kansei engineering supports prod- 
uct designers by providing relations among cus- 
tomers' feelings and corresponding designs. It also 
assists the consumer in selecting a product that fits 
his /her  feeling, among a variety of products. 

The standard procedure of Karlsei engineering 
involves: (1) Selection of adjective words for ex- 
pressing Kansei on the products, (2) Kansei Experi- 
ment: Evaluation of the product samples using a 
semantic differential method (SD) scale question- 
naire, (3) Multivariate analysis of evaluation data. 
The evaluation is often analyzed by principal compo- 
nent analysis (PCA) and Hayashi's Quantification 
Theory Type I. (4) Development of Kansei engineer- 
ing expert systems. Obtained relations among com- 
ponents' design, feature and semantic structure are 
built into inference rules. 

Our Kansei engineering expert systems (Kansei 
ES) can draw designs that correspond to the user's 
Kansei expressed by adjectives. We developed vari- 
ous Kansei ES for house interior design, car interior 
design, garment coordination, construction machine 
design and office chair design (e.g., Nagamachi, 
1991, 1995, Horiguchi and Suetomi, 1995; Shimizu 
and Jindo, 1995; Jindo et al., 1995; Fukushima et al., 
1995). 

Statistical analysis and building expert systems 
require different kinds of expertise for each work. 
Because multivariate analyses have different mathe- 
matical constraints, it is not easy to use for ordinary 
industrial designers. Kansei engineering is regarded 
as an important technique; however, such difficulties 
are technical hurdles that kept the enabling tools 
from real-world industrial applications. 

In recent years, we have developed several auto- 
matic analyzers and builder systems for Kansei ESs 
using self-organizing neural networks as a multivari- 
ate analyzer (AKSYONN: Automatic Kansei expert 
SYstem generator by self-Organizing Neural Net- 
work). These systems produce simplified Kansei ESs 
that have graphical user interfaces. They do not 
require any programming or statistical expertise. Ap- 

plying sell-organizing type neural networks to the 
analysis of Kansei experiment data enables easy, 
speedy and flexible analysis and rule building. In 
AKSYONNI (Ishihara et al., 1993), product and 
adjective relations are extracted. In AKSYONN2 
(lshihara et al., 1994a), groups of adjectives that 
have similar meanings on products are extracted. In 
AKSYONN3 (Ishihara et al., 1994b), subjects" indi- 
vidual differences on Kansei experiment responses 
are extracted. All of the above systems use the 
ARTI.5-SSS neural network as a classifier and a 
feature extractor. 

In this article, we present AKSYONN4. This 
system performs an automatic analysis of the seman- 
tic structure of Kansei, by two types of self-organiz- 
ing neural networks, PCAnet and ARTI.5-SSS. 
PCAnet does principal component analysis, and 
ART1.5-SSS classifies PCA results and extracts fea- 
tures of each class. Our aim is automatic rule build- 
ing on semantic structure of adjective words, instead 
of conventional PCA and interpretation of the com- 
puting results by well-trained statisticians. 

Analyzed Kansei structure can give product de- 
signers several important insights in Kansei engi- 
neering. First, we identify adjectives that have simi- 
lar meanings. By reducing those adjectives, we de- 
crease the total number of adjectives used for the 
questionnaire. Thus, it makes the assessment easier, 
reduces the experimental load on subjects and 
achieves a more accurate assessment. Second, speci- 
fying Kansei structure shows explicit Kansei fhctors 
for product designs. AKSYONN4 obviously shows 
the structure of Kansei by two- or three-dimensional 
graphs. Engineers can easily grasp the Kansei struc- 
ture, and can recognize important Kansei. Using 
these Kansei factors, design strategy will be more 
definite. In addition, prototypes and existing prod- 
ucts can be classified (or mapped) on several Kansei 
factors. Both designer and engineer teams will recog- 
nize factors and will share ideas. 

In the AKSYONN4 system, we reduced the 
amount of computation by using neural networks for 
the principal component analysis. Section 2 describes 
a measurement method of Kansei, principles and 
techniques for neural network-based analysis. The 
structure of the AKSYONN4 system is described in 
Section 3. Analyzing results of the Kansei experi- 
ment on shoes is detailed in Section 4. Section 5 
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presents comparisons with traditional multivariate 
analyses. In the comparison, our system shows that 
its analyzing ability is equal to conventional meth- 
ods. 

2. Analyzing Kansei structure 

We regard Kansei as a set of many feelings, 
rather than a single feeling. The idea is derived from 
Osgood and his colleagues' works in the 1950s and 
early 1960s, 

As we mentioned in a previous section, Kansei 
engineering uses SD method for modeling semantic 
space which shows relations between the sample and 
meanings of typical adjective words. 

defined index of meaning. Osgood and his col- 
leagues showed that semantic space can be ab- 
stracted by three orthogonal dimensions, Evaluation, 
Potency and Activity. Although they argued general- 
ity of the three dimensions, Osgood and others' later 
studies showed basic dimensions can change as eval- 
uation varies (Osgood, 1962). 

More than thirty years have passed from the 
proposal of semantic differential; yet, it is still the 
most powerful quantitative analyzing method of 
meanings, especially, for affective meanings. We 
have used the method for evaluating designs of 
products, and for analyzing semantic structures 
(Nagamachi, 1991, 1995). 

2.2. Analyzing procedures in Kansei engineering 

2.1. Semantic differential 

The semantic differential was developed by Os- 
good et al. (1957) as a measurement technique to 
assess affective meaning. The semantic differential is 
a standardized procedure for eliciting a carefully 
devised sample of a subject's placement of a word 
on a continuum. It uses scales made of various polar 
terms. Subjects rate concepts against the series of 7- 
or 5-point scales. For example, subjects rate their 
meaning of 'Apple'  along a scale of estimate terms 
( e . g . ,  g o o d _ : _ : _ :  : _ :  : _ b a d ,  
large_: :_: : : : small, active_:_: : : :_: _pas- 
sive). These scales provide quantitative measure- 
ments on different terms. By averaging across sub- 
jects, it can provide a stable estimation of the con- 
cepts. 

Osgood and Suci (1955) assumed a general prin- 
cipal structure of meanings, and proposed doing 
factor analysis on ratings by semantic differential. 
They analyzed correlation matrices of ratings on 
estimate terms, and assumed extracted factors as 
axes of semantic space. By assigning estimate terms 
to the semantic space, we can recognize relations 
between meanings and concepts. If it can be demon- 
strated that some limited number of dimensions or 
factors are sufficient to differentiate among the 
meanings of randomly selected concepts, and if the 
scale system that is finally selected satisfies the usual 
criteria of measurement, then the data obtained with 
such a semantic differential become an operationally 

In Kansei engineering, evaluations are done on 
product samples. Estimate terms are taken from mag- 
azines, mail-order catalogues, and from recordings of 
conversations in stores. Some of these words are 
adjective words and others are jargon. We label these 
words as Kansei words. 

After measurement by SD scales of many Kansei 
words, principal component analysis or factor analy- 
sis is used for compressing information into a smaller 
number of synthesized variables and for finding axes 
of semantic space. Then, Kansei words are mapped 
in the semantic space based on their principal com- 
ponent loadings. Similar Kansei words are grouped 
together. As a result, we obtain a basic structure of 
Kansei and word groups that have salient meanings 
on evaluation. 

The structure of Kansei varies by the sort of 
products. Kansei structures of car interior design 
clearly differ from one of garment design. The con- 
straints to products (e.g., functions, size, purpose) 
must relate specifically to the product design. Thus, 
we must analyze Kansei structure by principal com- 
ponent analysis, for every product using many Kan- 
sei words. 

A common problem in doing principal component 
analysis is the requirement for large computer mem- 
ory. Thus, even modern statistical analysis packages 
that run on powerful personal computers have a limit 
on a number of variables. Computation is often 
impossible because of the memory consumption of 
variables' correlation (or covariance) matrix and its 
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operation. Moreover, doing multivariate analyses, 
building inference rules and building expert systems 
require expertise both on statistical and on artificial 
intelligence programming. 

In this study, we used neural networks for analy- 
sis to reduce the problems of  memory and expertise. 

2.3. Principal component  analysis by PCA net 

As we mentioned earlier, multivariate analyses 
have an important role in Kansei engineering. When 
we deal with multivariate data whose variables are 
correlated, expressing a structure of  the data by a 
smaller set of  variables makes its explanation easier. 
Principal component analysis (PCA) is used to trans- 
form an original set of  correlated variables into a 
new set of  uncorrelated variables, which are linear 
composites of  the original variables. This property of  
the analysis method is used to reduce an original set 
of  variables to a smaller set, which accounts for 
much of  the covariance in the original set, or to 
study the structure of a set of  variables with underly- 
ing factors or sources of  covariance. In other words, 
PCA summarizes most of  the variation in a multi- 
variate system in fewer variables. PCA is widely 
used among disciplines, such as psychology and 
computer science, as a tool for data compression and 
analyzing multivariate data structure. 

Principal components are computed axes that pro- 
vide minimum information loss. It provides general- 
ized scales of  combinations of  many variables. 
Transforming sample scores by principal compo- 
nents (computing principal component scores), rank- 
ing and investigating characteristics of  samples are 
achieved. 

2.3.1. Principle o f  PCA 
We describe the procedure of  PCA in a qualitative 

manner. Suppose that there are p variables, {x~, 
x 2 . . . . .  Xp}. The aim is to get a linear compound that 
best summarizes the p-dimensional distribution. Fig. 
1 geometrically shows an example of  a solution. 

Here, we define a new linear compound U 1 , whose 
coefficients a r e  b l l , b l z , . . . , b l p  , thus, U l = b l l ) l  + 

b l z x  2 q-  • • ' + b l p X  p. bl j  is defined so that the line 
U 1 represents the maximum variance. But it is not 
enough, because larger values of  blj make the line 
U~ have a larger variance, with no bounds. We 
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1 
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Fig. 1. A set of data and two principal components in the 

two-dimensinal  plane. 

constrain b~j for b~l + b~2 + . • • q-b~p = I tO avoid 
this point. In this way, U~ becomes a transformation 
to a specific line that represents the maximum vari- 
ance of  the p-dimensional set. The line is called the 
first principal componen t  of  variables {x~, 
x 2 . . . . .  Xp}. After getting U~, the aim is to look for 
the linear compound U 2, that represents the next 
maximum variance. The constraints are that U~ does 
not correlate with U T and is also normalized, that is, 
U 2 must be orthogonal to U t. PCA seeks the hth line 
that represents the hth maximum variance after ex- 
tracting lines from U~, to U h. We can approximate p 
variables data by a small number of  principal com- 
ponents (Us) without large information loss. The Us 
are eigenvectors of  the correlation matrix of the 
input Q = E[xxV]. Jacobi method and QR method 
are conventional numerical computation methods for 
getting eigenvectors that are commonly used (Press 
et al., 1992). 

A problem of the conventional method is consum- 
ing large memory. These methods must keep correla- 
tion matrix Q in memory and need iterative compu- 
tation to convergence. This is one of  the difficulties 
in doing PCA. 

2.3.2. Hebbian learning rule and maximization o f  
L, ariance 

We compute eigenvectors by a neural network. 
Here we assume a neuron YT that gets input signals 
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from N neurons x~, x 2 . . . . .  x•. cli is a synapse 
weight of x i to y~. Output signal of yl is defined as 

N 

Yl = ~ c~ixi" (1) 
i=1 

In a classical Hebbian learning rule, synapse 
weights are updated by Eq. (2). 

c j i ( t+  1 ) = c i i ( t  ) + y y j ( t ) x i ( t  ) ( y :  constant). 

(2) 

Following is an explanation for why the Hebbian 
rule maximizes the variance of output vector: When 
updating synapse weights, frequently inputted pat- 
terns add similar value to c U. As a result, such 
patterns come to have large influence to y~. The 
inputs shown as dots in Fig. 1 have positive correla- 
tion between x~ and x 2. In this case, most of the 
inputs have the same sign for x I and x 2 ( [ + , +  ] or 
[ - , -  ]). As learning progresses, Yl comes to have a 
large value when both x I and x 2 have large value 
and the same sign ( [ + , + ]  or [ - , - ] ) .  Thus, the 
variance of y~ is maximized in the direction to 
maximize the correlation between x~ and x 2. This is 
similar to the procedure of eigenvector extraction of 
a correlation matrix in PCA. Each component of c 
can infinitely grow in the original Hebb rule. Oja 
proved that it is possible to make the sum of squares 
of each c converges to 1 by adding feedback. He 
also proved that c H . . . .  cl N becomes the first eigen- 
vector when converged (Oja, 1982). 

2.3.3. Generalized Hebbian algorithm 
Here we describe the Oja algorithm and the exten- 

sion to extract second and more eigenvectors. 
Eq. (3) shows the Oja algorithm. It finds only the 

first eigenvector which has the largest eigenvalue. 
Thus, Eq. (3) corresponds to the case of only one 
output (y l )  neuron. 

ci( t + 1) =ci (  t ) + y y (  t)[ xi( t ) - y( t )ci(  t) ]. 
(3) 

Sanger (1989) extended Oja's constrained Heb- 
bian learning rule as generalized Hebbian algorithm 
(GHA). We define a single-layer network (one layer 
of processing neurons) f = C£, where ~' is the N-di- 
mensional input vector, C is the M × N weight 
matrix, ~ is the M-dimensional output vector with 

3 

c111 ~~r~ °31 

Fig. 2. Architecture of PCAnet (left) and network to implement 
learning rule (right). 

M < N, and y is the rate of changing the weights. In 
this paper, we regard network implemented GHA as 
a PCAnet. The architecture of PCAnet is shown in 
Fig. 2. The correlation matrix of the input is defined 
as Q = E[xxV]. GHA is described as: 

cji ( t + 1) = cj ,( t)  + y ( t )  (Y i ( t )  x , ( t )  

-yj(t) E ck,(t) (4) 
k<_j 

Eq. (4) shows a modification rule for the synapse 
weight between the ith element of input vector and 
the jth neuron. Synapse weights and outputs of 
beforehand (1 . . . . .  j -  lth) neurons negatively affect 
the modification of jth neuron's weight. The GHA 
combines the Oja algorithm and Gram-Schmidt or- 
thogonalization algorithm. It can extract M eigen- 
vectors in order. 

In this algorithm, if we maintain the diagonal 
elements of CC T equal to 1 then a Hebbian learning 
rule will cause the rows of C to converge to the first 
eigenvector of Q. 

The rows of C are the M eigenvectors of Q, 
CC T= I and Q = CTAC, where A is the diagonal 
matrix of eigenvalues of Q in descending order. The 
weight adaptation process guarantees CC T = I, GHA 
provides a practical procedure to find M eigenvec- 
tors without calculating Q. 

Fig. 3 shows the trajectory of c in the orthogonal- 
ization process. In this example, the center of distri- 
bution of the set of input data (shown as dots) is 
[0,0]. PCAnet has 2 neurons that have 2-dimensional 
input vectors. After 200 inputs, Cll =0.82,  c12 = 
0.63, Czl = -0 .22 ,  c22 = 0.62 (shown as solid ar- 
rows). Two y neurons have mutually orthogonalized 



98 S. lshihara et al. / International Journal o/ bMustrial Ergonomics 19 (1997) 93-104 

1.5 

-1.5 -I -C.-~ 

-0 .5  

-1 

-1 .5  

X 
2 

~ 5  X 

Fig. 3. Two principal components extracted by PCAnet. 

synapse weights that correspond to first and second 
eigenvectors. 

2.4. Sel f-organizing clustering neural  network, 

A R T I . 5 - S S S  

In the preceding chapter we described computa- 
tion of principal component loadings using synapse 
weights and output values of PCAnet. Dimensional- 
ity of variables is remarkably reduced. Furthermore, 
to classify Kansei words in abstracted semantic space 
by principal component loadings makes its explana- 
tion easier. ARTI.5-SSS, another self-organizing 
neural network in AKSYONN4 system, does such a 
task. The network performs non-hierarchical self- 
organizing clustering. Since the mechanism of the 
network was already explained in Ishihara et al. 
(1995), we show its outline here. 

In general, classifying input data into appropriate 
classes is an important aspect of recognizing the 
data. When a set of input data and its corresponding 
class (called teacher or correct answer) is given, the 
task is called 'learning with teacher' or 'supervised 
learning'. When only a set of input data is given, it is 
called 'learning without teacher' or 'unsupervised 
learning', Hertz et al. (1991) noted several possibili- 
ties of unsupervised learning. Principal component 
analysis is one of them. Several output units con- 

struct a set of axes (principal components), along 
similarity to previous examples, with a kind of ma- 
jority rule of inputs. As we mentioned in the preced- 
ing section, eigenvectors are formed in the weights 
of PCAnet. 

Another possibility of unsupervised learning net- 
work is a self-organizing clustering network. Differ- 
ent from PCA. only one unit is active among output 
units at a time; the unit corresponds to a class which 
the input falls into. This type of neural computation 
is based on competitive learning where output units 
compete for being fired. A unit that has the largest 
inputs will be a winner. A class corresponds to an 
input which is found by the similarity to the previous 
examples. Similar inputs are classified into a same 
output unit which corresponds to a class. The classes 
must be made by the network itself from the set of 
input data. Self-organizing clustering means self- 
generation of classes. Learning is done on a winner 
unit to reflect inputs. As learning proceeds, a synapse 
weight vector of each output unit comes to a proto- 
type of a class. 

In simple competitive learning networks, an input 
must be classified into a winner output unit. The 
winner is merely the most similar one among the 
previous formed classes; thus, it is not convinced it 
is similar enough to a new input. ART is an exten- 
sion of simple competitive learning to enable stable 
and accurate clustering. ART type neural networks 
have an explicit distance measurement mechanism 
and distance criterion r. In ART, a new input is 
given, when it is similar enough to a winner's proto- 
type, then the prototype is slightly modified to the 
new input. When not similar enough to a winner, and 
when there ever exists an unassigned unit, the unas- 
signed unit is chosen as a winner. 

We used ARTI.5-SSS (Ishihara et al., 1993, 
1994a,b,c,1995). It has two layers (FI and F2) which 
contain processing units and a reset mechanism. The 
neurons involved in F1 receive input signals. Each 
F2 neuron represents a class and is connected with 
inhibitory links to other F2 neurons. Fl and F2 units 
are interconnected. Through a competition process, 
one neuron is activated that receives maximum input 
signals multiplied by bottom-up synapse weights. 
(See Fig. 4.) 

A reset mechanism sends a reset signal to the F2 
layer when a prototype (top-down weights) and the 
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Input Vector 

Fig. 4. Architecture of ART1.5-SSS. 

input vector are not similar. Similarity is measured 
by an angle between two vectors. When the angle is 
smaller than similarity criterion, a match occurs. 
Otherwise, a reset signal is sent, and a search occurs. 

When a search occurs, the algorithm selects the 
next maximum neuron and tests again. If all commit- 
ted nodes failed the test, an uncommitted node in F2 
is chosen for the new class. 

Connections between the chosen neuron in F2 and 
the neurons in F1 are modified so that they become 
slightly similar to the input vector. Each top-down 
and bottom-up synapse weights vector of a class 
(each F2 neuron) can be interpreted as a prototype of 
input vectors that belong to the class. We modified 
the learning rule of ART1.5 (Levine and Penz, 1990) 
to make classes that have meanings under small 
sample size conditions. We call it ART1.5-SSS, and 
we confirmed its ability by comparing it with con- 
ventional cluster analysis and with MDS (Ishihara et 
al., 1995). 

In this paper, we present the AKSYONN4 system 
that automatically analyzes SD questionnaire data by 
the two self-organizing neural networks discussed 
above. The neural networks analyze the data with 
less memory than conventional computing methods. 
In the next section we describe its architecture. 

3. AKSYONN4 system architecture 

The AKSYONN4 system takes Kansei experi- 
ment data as an input and generates Kansei ES on 

the target domain. It involves the rule generator and 
Kansei ES generator (see Fig. 5). 

Rule generator. The rule generator that has 
PCAnet and ART1.5-SSS generates inference rules 
of relations between adjectives and the physical de- 
sign of products, and rules of semantic structure. 
Both PCAnet and ART1.5-SSS are self-organizing 
type neural networks as described in the previous 
section. PCAnet performs principal component anal- 
ysis. ARTI.5-SSS is used for classifying adjective 
words by principal component loadings. 

The rule building procedure is as follows. 
1. Extract eigenvectors by PCAnet 

Evaluation values of k sample products by a SD 
questionnaire that contains n adjectives are en- 
coded into k of n-dimensional vector set (aver- 
aged between subjects). When a user inputs a set 
of data, PCAnet extracts eigenvectors of a corre- 
lation matrix of n variables and computes princi- 
pal component scores of product samples as out- 
put. 

2. Compute principal component loadings 
Principal component loadings of each adjective 
are computed using eigenvectors and principal 
component scores. Since principal components 
are mutually orthogonalized, adjectives can be 
presented graphically on orthogonal space by 
principal component loadings. Principal compo- 
nent loadings and principal component scores are 
sent to ART1.5-SSS for classifying. 

3. Classify adjectives and products by ART1.5-SSS 
ART1.5-SSS classifies adjectives into several 
groups by principal component loadings, so that 
members of each group have similar meanings 
according to the evaluation value on adjective 
words. It also classifies products by principal 
component scores. 
Kansei ES generator. Kansei ES generator reads 

the output from the rule generator and automatically 
makes an expert system. The generated ES have 
card-type graphical user interface and each card 
shows classified Kansei words. It calls the picture 
data of each sample product and shows the picture 
data. Automatic generation of the ES can be com- 
pleted in several minutes. The AKSYONN4 system 
is written by using C language, HyperTalk, that is a 
scripting language of HyperCard, and Mathematica. 
The system runs on a Macintosh computer. 
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Fig. 5. Structure of AKSYONN4 system. 
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4. Analyzing Kansei semantic structure on shoes 
by AKSYONN4 

We conducted an experiment for evaluating 
women ' s  shoe (loafers and boots) samples on a 
5-point SD scale. We selected 42 shoes from maga- 
zines and mail order catalogues. Pictures of shoes 
were processed to remove the background and their 
size and orientation were adjusted by image process- 
ing software. Processed pictures are presented to 18 
female college student subjects whose ages were 
nineteen or twenty years. Forty-five adjective words 
were selected from articles by frequency of use, and 
used for evaluation on the SD questionnaire. Five- 
point scaled evaluations were encoded into 0.25 step 
values between 0 and 1, PCAnet computed eigenvec- 
tors and principal component  scores of a set of data. 
(Initial value of y is 0.02, data is given to network 
by 10 iteration.) Input vectors have 45 dimensions, 
and the number of neurons is four. Thus, four major 
principal components are extracted. Principal compo- 
nent loadings of each adjective are calculated from 
the variance of output of  PCAnet. Fig. 6 shows the 
principal component  loadings of  each Kansei word 
from the first to third principal components. 

On the first principal component (PC1), Kansei 

Table 1 
Classified Kansei words by ART1.5-SSS using principal compo- 
nent loadings by PCAnet 

Cluster Kansei words 
number 

1 tidy, refined, elegant, young lady-like, 
smart, slim 

2 adult, ambience, sexy, gorgeous, beautiful 
3 homely 
4 fascinating, fashionable 
5 dashing 
6 soft, light 
7 moderate, feminine, tender, intellectual, 

calm, proper 
8 warm, cute, bright 
9 dark, shapeless 

10 unrefined, coarse, juvenile 
11 indivual, diversified, showy 
12 sporty, casual, active, boyish, masculine, 

firm 
13 volume, overdecorated, heavy, hard 
14 sharp 

words that have positive large loadings are ' sporty ' ,  
' juvenile ' ,  'act ive ' ,  'boyish '  and 'casual ' .  Words 
that have negative large loadings are 'elegant ' ,  ' s l im' ,  
' young ladylike' ,  ' t idy ' .  The first principal compo- 
nent can be interpreted as an axis representing activ- 
ity or refinement. On the second principal compo- 
nent (PC2), words that have positive large loadings 
are ' l ight ' ,  'moderate ' ,  ' tender ' ,  ' soft '  and 'shape- 
less'. Negative large words are 'bard ' ,  'dashing' ,  
' fascinating' ,  ' heavy ' ,  'over-decorated' .  The second 
principal component can be interpreted as an axis 
representing solidity or heaviness. On the third prin- 
cipal component (PC3), positive large words are 
'cute ' ,  'wa rm ' ,  'br ight ' ,  'casual '  and ' tender ' .  Nega- 
tive large words are 'dark ' ,  ' sharp ' ,  'homely '  and 
'smart ' .  The third principal component can be inter- 
preted as mildness and firmness. 

ART1,5-SSS classified Kansei words by principal 
component  loadings. Discrimination criteria variable 
r was 0.96. Kansei words are classified into fourteen 
clusters. Table 1 shows the cluster of Kansei words. 
Here we consider some of them. The words of 
cluster 1 have large negative loadings to PC1, small 
negative to PC2 and around zero value to PC3. 
Cluster 1 is regarded as words meaning highly re- 
fined and slightly heavy feelings. Cluster 12 is con- 
trary to the cluster 1. The words of cluster 12 have 
large positive loadings to PC1, small positive to 
PC2, and around zero to positive on PC3. They mean 
not refined, light and active feelings. This contrast is 
mainly on PC1 and PC2. This is a major factor of 
Kansei on shoes. Cluster 11 and cluster 7 are con- 
trary mainly on PC2. On shoes, appealingness is 
related to degree of solidity and heaviness. 

Using two self-organizing neural networks, the 
semantic structure of Kansei is automatically ana- 
lyzed. Kansei ES generator reads the analyzed re- 
sults, and generates simplified ES that have graphical 
user interface. Users can browse and explore Kansei 
structures by the ES. Fig. 7 shows the screen of built 
Kansei ES. 

5. Comparisons with conventional computation 
methods 

To verify the analyzing ability of PCAnet and 
ART1.5-SSS, we compared the results to conven- 
tional computation methods. 
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Table 2 
Classified Kansei words by UPGMA using principal component 
loadings by QR method 

Cluster Kansei words 
number 

I 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

tidy, refined, elegant, young lady-like, smart, 
slim, intellectual *, beautiful *, calm *, proper * 
adult, ambience, sexy, gorgeous, sharp * 
homely 
fascinating, fashionable 
dashing 
moderate, feminine, tender, soft *, light * 
warm, cute 
bright * 
dark 
unrefined, coarse, shapeless * 
indivual, diversified, showy 
sporty, casual, active, boyish, juvenile * 
volume, overdecorated, heavy, masculine *, firm * 
hard * 

We used QR method for the conventional method 
for PCA. The method is known as precise computa- 
tion method of numerical eigenvectors and eigenval- 
ues (see e.g. Press et al., 1992). Fig. 8 shows princi- 
pal component loadings by QR method. Fig. 8 and 
Fig. 6 show similar results. Differences of principal 
component loadings on the principal component by 
the two methods are calculated. The maximum 
squared difference is 0.153; the mean value is 0.012. 
PCAnet based PCA result seems to be a good ap- 
proximation of the conventional method. 

Principal component loadings by QR methods are 
classified by the UPGMA method. UPGMA (un- 
weighted pair group method using arithmetic aver- 
ages) is one of the most commonly used hierarchical 
clustering methods (Romesburg, 1989). Table 2 
shows the classification result. We decided a cut-off 
point of distance measure (0.6) in a dendrogram, 
where the number of clusters is the same as the 
result of ART1.5-SSS. 

Marked (*)  words in Table 2 are classified into 
different clusters from the neural network-based 
analysis result. Several words are classified into 
different clusters, and two clusters (cluster 6 and part 
of cluster 7 of ART1.5-SSS) were joined to cluster 6. 
It is well known that conventional clustering often 
shows different results by methods of similarity (or 
dissimilarity) measurement and methods of combin- 

ing clusters (e.g., Anderberg, 1973; Romesburg, 
1989). We compared several different clustering 
methods. The words differently classified are also 
classified into different clusters by other methods. 
We regard words that are located on the fringes of 
the clusters as unstable. Classification results by 
conventional methods and by ART1.5-SSS are prac- 
tically similar. 

6. Discussion 

Comparisons of the analyzed results confirm the 
ability of our neural network based Kansei structure 
analysis. It is well known that clusters' boundaries 
are rather different by many clustering methods. 
Although comparison of accuracy is a relative one 
our approach shows sufficient accuracy. 

Self-organizing neural networks that we used take 
less computation and can perform fast analysis. As 
Sanger (1989) notes, PCAnet does not need to con- 
tain a correlation matrix that takes much memory. 
Thus, in eigenvector extraction, it needs a smaller 
matrix computation than conventional methods. 

In this study, we used 45 Kansei words. The 
correlation matrix Q contains 2025 elements, and 
requires prior computation for Q and containment 
throughout the computation process. PCAnet re- 
quires yx v and yyT matrices. In this experiment, the 
number of elements is 180 + 16. Because the re- 
quired number of principal components is less than 
the dimension of input vector, PCAnet can compute 
using smaller amounts of memory than conventional 
methods. This feature enables us to expand the num- 
ber of expressing Kansei words for analysis using 
smaller computers and quick analyzing. It is prefer- 
able to use Kansei engineering ES on the site of the 
design. 

7. Conclusions 

We have developed a self-organizing neural net- 
works-based automatic analyzer of Kansei semantic 
structures. Accuracy of the analyzer was confirmed 
by comparison with conventional computation meth- 
ods of multivariate analysis. 
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We attempt to apply this system and continue to 
confirm its accuracy for many cases of Kansei exper- 
iments' data. 
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